Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioinformatics ; 40(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38688585

RESUMEN

MOTIVATION: Simulating gut microbial dynamics is extremely challenging. Several computational tools, notably the widely used BacArena, enable modeling of dynamic changes in the microbial environment. These methods, however, do not comprehensively account for microbe-microbe stimulant or inhibitory effects or for nutrient-microbe inhibitory effects, typically observed in different compounds present in the daily diet. RESULTS: Here, we present BN-BacArena, an extension of BacArena consisting on the incorporation within the native computational framework of a Bayesian network model that accounts for microbe-microbe and nutrient-microbe interactions. Using in vitro experiments, 16S rRNA gene sequencing data and nutritional composition of 55 foods, the output Bayesian network showed 23 significant nutrient-bacteria interactions, suggesting the importance of compounds such as polyols, ascorbic acid, polyphenols and other phytochemicals, and 40 bacteria-bacteria significant relationships. With test data, BN-BacArena demonstrates a statistically significant improvement over BacArena to predict the time-dependent relative abundance of bacterial species involved in the gut microbiota upon different nutritional interventions. As a result, BN-BacArena opens new avenues for the dynamic modeling and simulation of the human gut microbiota metabolism. AVAILABILITY AND IMPLEMENTATION: MATLAB and R code are available in https://github.com/PlanesLab/BN-BacArena.


Asunto(s)
Bacterias , Teorema de Bayes , Microbioma Gastrointestinal , ARN Ribosómico 16S , Humanos , ARN Ribosómico 16S/genética , Bacterias/metabolismo , Bacterias/clasificación , Simulación por Computador , Biología Computacional/métodos , Programas Informáticos , Microbiota
2.
Artículo en Inglés | MEDLINE | ID: mdl-38243975

RESUMEN

The gut microbiome is a complex ecosystem, mainly composed of bacteria, that performs essential functions for the host. Its composition is determined by many factors; however, diet has emerged as a key regulator. Both the Mediterranean (MD) and Japanese (JD) diets have been associated with significant health benefits and are therefore considered healthy dietary patterns. Both are plant-based diets and although they have much in common, they also have important differences mainly related to total calorie intake and the consumption of specific foods and beverages. Thus, it has been hypothesized that they exert their beneficial properties through different nutrients and bioactive compounds that interact with gut microbes and induce specific changes on gut metabolic pathways. In this review, we present current data on the effects of the MD and JD on the gut microbiome. Furthermore, we aim to examine whether there are differences or shared effects on the gut microbiome of people who adhere to these dietary patterns.

3.
Int J Mol Sci ; 24(11)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37298198

RESUMEN

Cow's milk allergy (CMA) is one of the most prevalent food allergies in children. Several studies have demonstrated that gut microbiota influences the acquisition of oral tolerance to food antigens at initial stages of life. Changes in the gut microbiota composition and/or functionality (i.e., dysbiosis) have been linked to inadequate immune system regulation and the emergence of pathologies. Moreover, omic sciences have become an essential tool for the analysis of the gut microbiota. On the other hand, the use of fecal biomarkers for the diagnosis of CMA has recently been reviewed, with fecal calprotectin, α-1 antitrypsin, and lactoferrin being the most relevant. This study aimed at evaluating functional changes in the gut microbiota in the feces of cow's milk allergic infants (AI) compared to control infants (CI) by metagenomic shotgun sequencing and at correlating these findings with the levels of fecal biomarkers (α-1 antitrypsin, lactoferrin, and calprotectin) by an integrative approach. We have observed differences between AI and CI groups in terms of fecal protein levels and metagenomic analysis. Our findings suggest that AI have altered glycerophospholipid metabolism as well as higher levels of lactoferrin and calprotectin that could be explained by their allergic status.


Asunto(s)
Microbioma Gastrointestinal , Hipersensibilidad a la Leche , Femenino , Animales , Bovinos , Leche/química , Lactoferrina/metabolismo , Hipersensibilidad a la Leche/diagnóstico , Heces/química , Biomarcadores/análisis
4.
Nutrients ; 14(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36364799

RESUMEN

Cow's milk allergy (CMA) is the most prevalent food allergy (FA) in infancy and early childhood and can be present with various clinical phenotypes. The significant increase in FA rates recorded in recent decades has been associated with environmental and lifestyle changes that limit microbial exposure in early life and induce changes in gut microbiome composition. Gut microbiome is a diverse community of microbes that colonize the gastrointestinal tract (GIT) and perform beneficial functions for the host. This complex ecosystem interacts with the immune system and has a pivotal role in the development of oral tolerance to food antigens. Emerging evidence indicates that alterations of the gut microbiome (dysbiosis) in early life cause immune dysregulation and render the host susceptible to immune-mediated diseases later in life. Therefore, the colonization of the gut by "healthy" microbes that occurs in the first years of life determines the lifelong health of the host. Here, we present current data on the possible role of the gut microbiome in the development of CMA. Furthermore, we discuss how gut microbiome modification might be a potential strategy for CMA prevention and treatment.


Asunto(s)
Hipersensibilidad a los Alimentos , Microbioma Gastrointestinal , Hipersensibilidad a la Leche , Bovinos , Animales , Femenino , Preescolar , Humanos , Hipersensibilidad a la Leche/prevención & control , Ecosistema , Disbiosis
5.
Nutrients ; 13(7)2021 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-34199047

RESUMEN

The gut microbiota has a profound effect on human health and is modulated by food and bioactive compounds. To study such interaction, in vitro batch fermentations are performed with fecal material, and some experimental designs may require that such fermentations be performed with previously frozen stools. Although it is known that freezing fecal material does not alter the composition of the microbial community in 16S rRNA gene amplicon and metagenomic sequencing studies, it is not known whether the microbial community in frozen samples could still be used for in vitro fermentations. To explore this, we undertook a pilot study in which in vitro fermentations were performed with fecal material from celiac, cow's milk allergic, obese, or lean children that was frozen (or not) with 20% glycerol. Before fermentation, the fecal material was incubated in a nutritious medium for 6 days, with the aim of giving the microbial community time to recover from the effects of freezing. An aliquot was taken daily from the stabilization vessel and used for the in vitro batch fermentation of lentils. The microbial community structure was significantly different between fresh and frozen samples, but the variation introduced by freezing a sample was always smaller than the variation among individuals, both before and after fermentation. Moreover, the potential functionality (as determined in silico by a genome-scaled metabolic reconstruction) did not differ significantly, possibly due to functional redundancy. The most affected genus was Bacteroides, a fiber degrader. In conclusion, if frozen fecal material is to be used for in vitro fermentation purposes, our preliminary analyses indicate that the functionality of microbial communities can be preserved after stabilization.


Asunto(s)
Fermentación , Congelación , Microbioma Gastrointestinal , Animales , Bovinos , Niño , Heces/microbiología , Almacenamiento de Alimentos , Microbioma Gastrointestinal/genética , Humanos , Masculino , Microbiota , Leche , Proyectos Piloto , ARN Ribosómico 16S/genética
6.
Genome Res ; 17(1): 7-15, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17151343

RESUMEN

Soil bacteria that also form mutualistic symbioses in plants encounter two major levels of selection. One occurs during adaptation to and survival in soil, and the other occurs in concert with host plant speciation and adaptation. Actinobacteria from the genus Frankia are facultative symbionts that form N(2)-fixing root nodules on diverse and globally distributed angiosperms in the "actinorhizal" symbioses. Three closely related clades of Frankia sp. strains are recognized; members of each clade infect a subset of plants from among eight angiosperm families. We sequenced the genomes from three strains; their sizes varied from 5.43 Mbp for a narrow host range strain (Frankia sp. strain HFPCcI3) to 7.50 Mbp for a medium host range strain (Frankia alni strain ACN14a) to 9.04 Mbp for a broad host range strain (Frankia sp. strain EAN1pec.) This size divergence is the largest yet reported for such closely related soil bacteria (97.8%-98.9% identity of 16S rRNA genes). The extent of gene deletion, duplication, and acquisition is in concert with the biogeographic history of the symbioses and host plant speciation. Host plant isolation favored genome contraction, whereas host plant diversification favored genome expansion. The results support the idea that major genome expansions as well as reductions can occur in facultative symbiotic soil bacteria as they respond to new environments in the context of their symbioses.


Asunto(s)
Frankia/genética , Genoma Bacteriano , Magnoliopsida/microbiología , Simbiosis , Elementos Transponibles de ADN , ADN Bacteriano , Evolución Molecular , Eliminación de Gen , Duplicación de Gen , Geografía , Datos de Secuencia Molecular , Fijación del Nitrógeno , Filogenia , Raíces de Plantas/microbiología , Profagos , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...